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NOMENCLATURE 

0, scale factor; 
J 
ty 

Bessel function of the first kind and order n; 
time ; 

t 
t’. a:: 

aA 
T(x, y, t), temperature; 
TI (x, y), see equation (2c) ; 
W, = x + iy, see equation (4) ; 
.% 4‘, spatial variables ; 
Y n, Bessel function of the second kind and order. 

Greek symbols 

thermal diffusivity ; 
separation constant: 
see equation (5); 
see equation (2c); 
roots of equation (8). 

INTRODUCTION 

IT IS AN accepted fact that temperature plays an important 
role on the structural behaviour of solid propellant rocket 
motors. 

Temperature limitations on surface-launched motors are 
less rigorous than those for air-launched rocket motors [l]. 

Parameters taken into account and extensively studied 
by the U.S. Navy are: environmental temperatures for 
surface-launched motors being transported along trans- 
continental shipping routes, storage temperature records 
obtained from coastal and inland Navy ammunition 
depots, etc. [I]. 

In flight, high Mach numbers generate severe heating 
conditions which are additive to those added by captive 
flight conditions. Thermo-elastic or thermo-viscoelastic 
unsteady stress analysis of the motor is certainly of basic 
importance from the point of view of structural integrity 
and operational performance of solid propellant rocket 
grains. 

The present study deals with the determination of the 
unsteady temperature field in an infinitely long circular 
cylinder with a star shaped perforation. It is assumed that 
the problem is governed by Fourier’s equation of heat 
conduction. 

Such configuration is an accepted, highly simplified 
mathematical model of an extremely complex thermo- 
structural problem which would require the solution of a 
nonlinear viscoclastic dynamic problem with coupled 
thermomechanical constitutive equations and exotic 
boundary configurations. 

*The code has been developed at Centro At6mico 
Bariloche. C.N.E.A. 
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The approximate analytical method used in the present 
study enables the research engineer and applied scientist to 
find a unified time-dependent solution which is valid 
regardless the shape of the doubly connected cross section. 

Admittedly other approximate methods such as the finite 
difference and the finite elements techniques are more 
general, but their accuracy is usually tested considering 
domains of very simple geometry, e.g. the circle or 
rectangle. The approach followed in this study allows for 
the finding of analytical solutions in other domains, thus 
providing an independent check of the accuracy of more 
general methods. 

The unsteady temperature field is also evaluated using a 
finite element approach.* 

THEORY AND DEVELOPMENT OF THE METHOD 

Consider the following unsteady heat conduction 
problem : 

aV2T(x, y, t) = ‘1T 
:t 

(la) 

T[L,(x. y) = 0, t] = 0 (i = 1,2) (lb) 

T(x, y, f)lrzo = T, (a constant), (Ic) 

where &(x, y) = 0 (i = 1,2) denotes the functional relations 
which define the inner and outer boundary respectively 
(Fig. 1). Applying the method for separation of variables 
one obtains the following: 

T’(f) + c+(C) = 0 (2a) 

v~r,(x,l.)+i,zT,(x,!‘) = 0 Pb) 

where :.’ is the separation constant and 

T(X, !‘, t) = r, (X, J’)T(f). (2c) 

The solution of equation (2a) is simply: 

r(r) - e-‘,“. (3) 

Equation (2b) may be expressed in complex variable 
form as: 

(4) 

where w = x + iy = R. eir and W is the complex conjugate of 
w. Let 

w = f(c); 5 = ,rcis (5) 
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FIG. I. Cross-section of a solid propellant rocket motor 
studied in the present investigation. 

be the analytic function which maps the interior of an 
annulus in the ,F-plane onto the given domain in the \I‘- 
plane. 

Substituting (5) in (4) results in the transformed partial 
differential equation: 

Since the transformed region is now an annulus, it is 
convenient to express the solution of (6) as a double infinite 
series of cylindrical harmonics: 

where p2 is the outer radius of the annulus. and J, and Yn 
are the Bessel functions of first and second kind 
respectively. 

The index II denotes the order of the Bessel functions and 

the ‘I.,. ‘5 arc the roots of the transcendental equation: 
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where rl is the inner radtus of the annulus. 
Since an approximate solution is desired it will be 

profitable to simplify equation (7) even further. This can be 
done after the following considerations: 

The boundary conditions (I b) and (1~) become in the <- 
plane : 

T(r,, 0. I) = 0 (1 = I. 2) (‘)a) 

T(r. 0. I)/,_,, = 7”. (9b) 

In view of equations (9) it is reasonable to expect that 
isotherms in the :-plane will not depart drastically from 
concentric circumferences. Consequently the O-dependence 
will be neglected. 

The temperature distribution is then given by the 
approximate truncated expression: 

T,(r, 0) 1 5 A”,[J”(‘/“,‘.))io(‘/om”z) 
m = 0 

Substituting (10) in equation (6) results in an error or 
residual function ~-:(r, 0). 

Use of a suitable “weighted-residuals” approach yields 
the eigenvalues ;$,,,. Details of the technique used have been 
published in the open literature [Z] [4]. 

Once the separation constants are known the tempera- 
ture distribution in the <-plane is given by: 

\I 

~~ .I,,(‘\tr,,,“z) Y”(r/o,r)] e-1 L., ’ ( I I ) 

where the il,,‘s are obtained from the initial condition (9~) 
and they are given by the relation [5]: 

It is important to point out that when M + X, equution 
(I 1) is un v.y~f .wlutior~ if the giwn ronjyurulion is un 
llwlulus. 

Sirwe (I I ) CY~III~~L’S it7 ~1 rupitl /ushim, the use of’ the first 
tcvn2 is wfficicwr ,jiw .wme prtrcticul upplicutions. 

Consider now the domain shown in Fig. I. The 
approximate mapping function which maps the given 
region onto an annulus in the <-plane is given by the 
expression [6] : 

I! = 0(0.77X9; +0.2Y65< 3 ~ 0.07895 : + 0.00345 I ’ 1. 
(13) 

For )I = I. equation (13) yields the inner contour and for 
r = 2.50 the outer boundary with an error less than l”,, 
since for r >> I the first term of (I 3) is predominant. 

It must be pointed out that if the web fraction (ratio of 
the diameters of the circumscribing circles for the outer and 
inner boundaries) is closer to unity it is necessary to use a 
truncated Laurent expansion [7]. 

Finding the coefficients of the mapping function involves 
then solution of a system of coupled integral equations. 

The next step is the calculation of the separation 
constants. This is done using an approach published 
elsewhere* [4]. 

For 
; = “2 

= 2.50 
i’l 

the two lowest eigenvalues are: 

(;,01 .(I) = 7.75 and (;so2 .u) = 5.50. 

I:INITE ELEMENT SOLUTION 4ND 
COMPARISON OF RESULTS 

Figure 2 shows the element distribution used in the 
present investigation. 

Figures 3 and 4 depict a comparison of values of the 
dimensionless temperature parameter T/TO as a function of 
R/u and the dimensionless time scale t’ = ntid. The polar 
variable 4 has been taken equal to zero in all cases. 

Figure 5 shows r/r, as a function of t’ for a fixed point 
in space (R/cc = 1.4168; 4 = 0). 

The analytic solution converges slowly for small values of 
the temporal variable (this is the reason why the curve has 
been extrapolated close to the origin of the plot). 

From the inspection of Figs. 3 5 one may conclude that 
the agreement is, in general, quite reasonable, especially if 
one considers that the approximate, analytic solution 
consists of only two terms and that the O-dependence in the 
t-plane is disregarded in the present analysis. Admittedly 
the agreement is not as good for other values of 4, 
especially for the extreme case where 4 = rr/4. 

No claim of originality is made in the present paper, but 
it is hoped that present results be of some value in future 
investigations dealing with boundary and eigenvalue pro- 
blems in domains of complicated boundary shape. 

Ack,lo~~lrdyr,nerIr.r-~The authors are indebted to E. 
Romanelli and R. Ercoli for their valuable aid in performing 
some of the preliminary calculations. 
______ 

*The separation constants are obtained solving equation 
(6) by means of a weighted-residuals approach [4]. 
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Frc;. 7. Finite element distribution 

FIG. 3. Variation of T/T, as a function of R!rt for r’ = 0.05 
and 0.10: C+ = 0. 

FIG. 4. Variation of T:T, BS i3 function of &a for t = 0.20 
and 0.40; 4 = 0. 

----“-- FINITE ELEMENTS SOLUTION 
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