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NOMENCLATURE
a, scale factor;
J s Bessel function of the first kind and order n;
t, time;
, t
t, A ;
aZ

T(x, y, t), temperature;

T (x,y), see equation (2¢c);

w, = X +iy, see equation (4);

X, ¥, spacial variables;

Y, Bessel function of the second kind and order.

n

Greek symbols
o, thermal diffustvity ;
¥, separation constant ;
see equation (5);
) see equation (2c);
Homs roots of equation (8).

A

INTRODUCTION

IT 1S AN accepted fact that temperature plays an important
role on the structural bebaviour of solid propellant rocket
motors.

Temperature limitations on surface-launched motors are
less rigorous than those for air-launched rocket motors [1].

Parameters taken into account and extensively studied
by the U.S. Navy are: environmental temperatures for
surface-launched motors being transported along trans-
continental shipping routes, storage temperature records
obtained from coastal and inland Navy ammunition
depots, etc. [1].

In flight, high Mach numbers generate severe heating
conditions which are additive to those added by captive
flight conditions. Thermo-elastic or thermo-viscoelastic
unsteady stress analysis of the motor is certainly of basic
importance from the point of view of structural integrity
and operational performance of solid propellant rocket
grains.

The present study deals with the determination of the
unsteady temperature field in an infinitely long circular
cylinder with a star shaped perforation. It is assumed that
the problem is governed by Fourier’s equation of heat
conduction.

Such configuration is an accepted, highly simplified
mathematical model of an extremely complex thermo-
structural problem which would require the solution of a
nonlinear viscoelastic dynamic problem with coupled
thermomechanical constitutive equations and exotic
boundary configurations.
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The approximate analytical method used in the present
study enables the research engineer and applied scientist to
find a unified time-dependent solution which is valid
regardless the shape of the doubly connected cross section.

Admittedly other approximate methods such as the finite
difference and the finite elements techniques are more
general, but their accuracy is usually tested considering
domains of very simple geometry, e.g. the circle or
rectangle. The approach followed in this study allows for
the finding of analytical solutions in other domains, thus
providing an independent check of the accuracy of more
general methods.

The unsteady temperature field is also evaluated using a
finite element approach.*

THEORY AND DEVELOPMENT OF THE METHOD

Consider the following unsteady heat conduction
problem:
T
aVAIT(x, y,t) = — (1a)
it
T(Li{x,»)=0,t]=0 (i=12) (1b)
T(x,v,t)l,-o = Ty (a constant), (1c)

where L;(x, y) = 0 (i = 1,2) denotes the functional relations
which define the inner and outer boundary respectively
(Fig. 1). Applying the method for separation of variables
one obtains the following:

() +aie(t) = 0 (2a)
VAT (x, 1) +7 Ti(x, ) = 0 (2b)
where y? is the separation constant and
Tx, v, 1) = Tilx, y)e(t). (2¢)
The solution of equation (2a) is simply:
(1) ~ e 5 (3)

Equation (2b) may be expressed in complex variable

form as:
T,

4

+7’ Ty =0 4
ewow 11 @
where w = x +iy = R-e” and w is the complex conjugate of
w. Let

w=f(&); {=re" (5)

*The code has been developed at Centro Atémico
Bariloche, C.N.E.A.
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FiG. 1. Cross-section of a solid propellant rocket motor
studied in the present investigation.

be the analytic function which maps the interior of an
annulus in the £-plane onto the given domain in the w-
plane.

Substituting (5) in (4) results in the transformed partial
differential equation:

A2 g

o T, 3 s
4 o+ SO =0 (6)
i
Since the transformed region is now an annulus, it is
convenient to express the solution of (6) as a double infinite
series of cylindrical harmonics:
T = 3 Y Awl Sl V)

n=0 m=0Q

=Syt 2) Vulumr)  cOS 1O (T)

where r, 1s the outer radius of the annulus, and J, and Y,
are the Bessel functions of first and second kind
respectively.

The index n denotes the order of the Bessel functions and
the 5,,,’s are the roots of the transcendental equation:

‘In('lnmrl ) );l(llnm i

Wlanr (%)
yn(”nmrl)

iJ:v(’]rlnrl.Z]

where r, is the inner radius of the annulus.

Since an approximate solution is desired it will be
profitable to simplify equation (7) even further. This can be
done after the following considerations:

The boundary conditions (1b) and (1c) become in the &-
plane:

Tir. 0.1) =0
T 0, g = T

(i=1.2) {(9a)
(9b)

In view of equations (9) it is reasonable to expect that

isotherms in the Z-plane will not depart drastically from
concentric circumferences. Consequently the 0-dependence
will be neglected.

The temperature distribution is then given by the

approximate truncated expression:

M
T 0 = Y AgulJolMon) Yolliomr's)
m=0
—Jotomr2) Yolio,r)]. (10

Substituting (10) in equation (6) results in an error or
residual function &(r, 0).

Use of a suitable “weighted-residuals™ approach yields
the eigenvalues 2 .. Details of the technique used have been
published in the open literature 2] --[4].

Once the separation constants are known the tempera-
ture distribution in the ¢-plane is given by:
M
Ty ) =T 0> Y Ag o) Yoliomr )
m=0

—JoUonra) Yolnomr)] et (11)

where the 4,,’s are obtained from the initial condition (9¢)
and they are given by the relation [5]:
PPN L L (12)
Soow 11+ o (o ra)

It is important to point out that when M — ., equation
(11} iy an exact solution if the given configuration is an
annulus.

Since (11) converges in a rapid fushion, the use of the first
term is sufficient for some practical applications.

Consider now the domain shown in Fig. 1. The
approximate mapping function which maps the given
region onto an annulus in the E-plane is given by the
expression [6]:

w = a(0.7789¢ +0.2965¢ ¥ —0.0789¢ 77 +0.00345 " 1),
(13)

For r = 1, equation (13) yields the inner contour and for
r =250 the outer boundary with an error less than 19,
since for r > 1 the first term of (13) is predominant.

It must be pointed out that if the web fraction (ratio of
the diameters of the circumscribing circles for the outer and
inner boundaries) is closer to unity it is necessary to use a
truncated Laurent expansion [7].

Finding the coefficients of the mapping function involves
then solution of a system of coupled integral equations.

The next step is the calculation of the separation
constants. This is done using an approach published
elsewhere* [4].

For

the two lowest eigenvalues are:

(o1 ) =275 and (y4; a) = 5.50.

FINITE ELEMENT SOLUTION AND
COMPARISON OF RESULTS

Figure 2 shows the element distribution used in the
present investigation.

Figures 3 and 4 depict a comparison of values of the
dimensionless temperature parameter T/T, as a function of
R/a and the dimensionless time scale ¢ = at/a?. The polar
variable ¢ has been taken equal to zero in all cases.

Figure 5 shows T/T; as a function of ' for a fixed point
in space (R/a = 1.4168; ¢ = 0).

The analytic solution converges slowly for small values of
the temporal variable (this is the reason why the curve has
been extrapolated close to the origin of the plot).

From the inspection of Figs. 3--5 one may conclude that
the agreement is, in general, quite reasonable, especially if
one considers that the approximate, analytic solution
consists of only two terms and that the §-dependence in the
E-plane is disregarded in the present analysis. Admittedly
the agreement is not as good for other values of ¢.
especially for the extreme case where ¢ = n/4.

No claim of originality is made in the present paper, but
it is hoped that present results be of some value in future
investigations dealing with boundary and eigenvalue pro-
blems in domains of complicated boundary shape.

Acknowledgements— The authors are indebted to E.
Romanelli and R. Ercoli for their valuable aid in performing
some of the preliminary calculations.

*The separation constants are obtained solving equation
(6) by means of a weighted-residuals approach [4].
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